Posted by: oikosasa | September 23, 2014

Towards the catastrophic collapse?

What happens when climate change destroys too many habitats? In the Early View paper “Robustness of mutualistic networks under phenological change and habitat destruction” Tomás A Revilla and co-workers present a model predicting potential outcomes.
Below is a short summary of their model and paper:
There is concern that climate change will disrupt the temporal schedules of interactions between plants and their pollinators or seed dispersers. This can make communities vulnerable to other ecological threats, for example habitat destruction. In our paper “Robustness of mutualistic networks under phenological change and habitat destruction”, we studied the simultaneous effects of phenological shifts and habitat destruction on the diversity and structure of mutualistic metacommunities.
We created a spatially-explicit model, in which the network of mutualistic interactions is locally determined by species occupancies, over a finite number of randomly distributed sites. The strengths of the interactions depend on the amount of phenological overlap between the species, affecting local survival. Our model uses empirical data on plant and pollinator phenologies recorded a century ago by Charles Robertson, and in present times and in the same area by Burkle et al (DOI: 10.1126/science.1232728), giving us the opportunity to simulate projected as well as historical changes in phenology. Habitat destruction was simulated by removing sites from the model.

Interactions depend on local species presences and phenological overlaps (in days). Extinctions are caused by site destruction (X) and interaction weakening, e.g. pollinator 1 becomes disconnected and plant 2 losses many interaction-days.

Our results show that habitat destruction causes the gradual erosion of local diversity. A catastrophic collapse in global diversity finally happens when the number of non-destroyed sites becomes too low, and the distances between them too large for recolonization. Recovering from such collapses could be difficult due to the positive feedbacks characterizing mutualisms, which promote alternative stable states.
Under phenological shifts interactions become weaker on average, increasing local extinction rates. When habitat destruction and phenological shifts occur together, they act synergistically: many sites become barren even though they are not destroyed, but for practical purposes these sites behave as if they were destroyed, making metacommunities even more vulnerable to habitat destruction.
Decrease in local and global diversity in response to habitat destruction, for 0, 10, 20 and 30 days of average advance in species phenologies.

Decrease in local and global diversity in response to habitat destruction, for 0, 10, 20 and 30 days of average advance in species phenologies.

Previous research has shown that connectance and nestedness can make mutualistic communities robust against cascading extinctions. We discovered that in effect, these network properties gradually decline with habitat destruction, leaving a very small core of highly connected sites holding the metacommunity before the final collapse. Small alterations in phenology can raise connectance a little bit, due to a few generalist species being able to make new interactions, but overall, large alterations tend to reduce connectance.
We can conclude that the robustness of mutualistic metacommunities against habitat destruction can be greatly impaired by the weakening of mutualistic benefits caused by the loss of phenological overlap.
Image credits: Michel Loreau

Image credits: Michel Loreau

We wish to thank Jacob Johansson, Niclas Jonzén and Jan-Åke Nilsson for inviting us to contribute with our paper to the special issue about “Phenological change and ecological interactions”.


  1. We could rephrase the first sentence:
    ‘What happens when climate change creates an amazing number of new habitats?’
    ‘What happens when climate change reconfigures a large number of habitats simultaneously?’
    ‘What happens when climate change shifts the trajectories of a large number of ever-changing habitats?’

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: