Posted by: oikosasa | June 17, 2014

Carbon flow between lakes and ground

How carbon moves from terrestrial food-webs to aquatic ones are studied in the new Early View paper “Boomerang ecosystem fluxes: organic carbon inputs from land to lakes are returned to terrestrial food webs via aquatic insects” by K. Scharnweber and co-workers. Below is their summary of the study:

The TERRALAC-project (http://terralac.igb-berlin.de/) ran from 2010 to 2013 and was an interdisciplinary project, based at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany in collaboration with University of Potsdam and Technical University Berlin. Five PhD students worked in five subprojects. The overall aim of TERRALAC was to study the effects of terrestrial particulate organic carbon (tPOC) on shallow lake ecosystems. We wanted to find out, how terrestrial leaves that enter lakes in autumn are actually processed with the lake food webs and we wanted to test this on the natural spatial scale.

Terra1

One prominent obstacle in studies on the effects and contribution of this allochthonous carbon on lake food webs is the problem of overlapping isotope values of the potential resources. Isotope signatures of the terrestrial carbon are often very similar to those of aquatic primary producers. TERRALAC chose a novel approach by using a tPOC tracer that is isotopically distinct, but also similar to the size and structure of natural leaves: maize (Zea mays) leaves.

Photo 1: Maize added into the littoral zone. The rope prevents it from floating into the open water.

Photo 1: Maize added into the littoral zone. The rope prevents it from floating into the open water.

In October 2010, we divided two small and shallow lakes, located in the rural area of Northern Germany approximately 100 km north of Berlin, in two equal halves. Both lakes are eutrophic and of similar size and depth. However, they have different alternative stable states: Gollinsee has turbid water and is dominated by phytoplankton, whereas Schulzensee has clear water and is dominated by macrophytes. We used plastic curtains to divide the lakes (Photo 1) from surface to bottom. With the help of many hands, we added the maize leaves into the littoral zone of the treatment sides of the lakes (Photo 2,3). By this approach we tried to mimic the natural input of tPOC by leaves in autumn.

Photo 2: Maize addition by hand in Schulzensee (October 2010).

Photo 2: Maize addition by hand in Schulzensee (October 2010).

Photo 3: Installation of the plastic curtain in Gollinsee.

Photo 3: Installation of the plastic curtain in Gollinsee.

Photo 4: Emergence trap used in our study.

Photo 4: Emergence trap used in our study.

In our article we present the flow of terrestrial carbon to lakes and back to its terrestrial surroundings via emerging insects (Figure 1). We focused on Chironomidae that have an aquatic-terrestrial life cycle and collected them as larvae, but also as adults using emergence traps (Photo 4). After emergence, they are known to become prey for terrestrial predators, for example for spiders that live in the riparian reed belts. Carbon isotope values of Chironomidae and spiders were significantly elevated in the lake treatment sides as compared to reference sides. As further demonstrated by isotope mixing models, contribution of maize was higher in Schulzensee, the lake where macrophytes are present. We conclude that structural complexity provided by the macrophytes may trap the leaves and by that enhance the food availability for the larval Chironomidae. In summary, we present the tight linkage between aquatic and terrestrial habitats and the cycling of organic matter across boundaries and borders.

 

 

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Categories

%d bloggers like this: