Posted by: oikosasa | May 3, 2014

Fever, starvation or being eaten?

Talk about choosing between pest and cholera! A bird on migration, has a tough job, and with a virus infection in the body, the job is even worse! In the early View paper “A tradeoff between perceived predation risk and energy conservation revealed by an immune challenge experiment”, by Andreas Nord and co-workers.

Below is Andreas summary of the study:

Birds, like man, must maintain a high and even body temperature to function properly. This is a challenging task, not least in winter when the internal temperature may be some 50-60 °C above that of the surroundings. It is not surprising that this challenge requires high food intake. In fact, a blue tit, which is a common garden and forest bird across Europe, must sometimes put on 10 % of their body weight as fat on a daily basis during cold winter days. A human of average weight would have to eat some 200 hamburgers to ingest the same amount of fat.
As if this was not enough, the time of peak food demand often coincides with the time when food resources are the most difficult to obtain. To overcome such hardships, many animals actively reduce their body temperature at night (nocturnal hypothermia), a process that substantially lowers their energy demands. Yet the use of nocturnal hypothermia is often not enough to avoid the risk of starvation, because the demands from other body functions compete for the same fat reserves. In these situations, birds may have to prioritize surviving the night by reducing the use of other costly functions, such as the immune defense system. In other words, because food availability is limited in winter, it may not be possible to maintain sufficient amounts of body fat at the same time as an adequate defense against invading pathogens.
This was the subject for our study, in which we investigated how an activated immune defense system impacted on the use of nocturnal hypothermia and behavioral strategies for minimizing energy expenditure in wild blue tits in southern Sweden. Contrary to our expectations, an immune response did not cause birds to change their use of nocturnal hypothermia, which could indicate that any energy costs of the immune defense system are not large enough to interfere with energy conservation processes. However, birds with an ongoing immune response showed a different behavior compared to healthy birds, which was manifested as an increased use of sheltered roosting sites when the immune response was at its peak. Using such roosting sites often confers energy savings, because birds are less exposed to wind and temperatures are higher than those outside. However, sheltered roosts often come at the expense of increased predation risk, because these roosts may be easier to locate and escape prospects are typically relatively low upon detection.
We interpret this increased risk taking behavior in sick birds as consequences of a higher need to exploit the energetic benefits of sheltered roosts. Because this required birds to accept a higher predation risk at night, our results may indicate that energy stress from less efficient thermo-regulation poses a higher mortality risk for sick birds than does any predation risks pertaining to sheltered roosting sites. This was not the case for healthy birds, whose thermo-regulatory capacity was not impaired by an ongoing immune response. These birds instead actively avoided sheltered roosts, because their main source of overnight mortality might indeed have been the risk of predation.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s


%d bloggers like this: