Posted by: oikosasa | December 13, 2013

Joint effects of predator and parasite on prey stress levels

We generally focus on either predation or parasitism. But what happens when we look at the combined effects of the two? Find out in the new Early View paper in Oikos: “Predators and trematode parasites jointly affect larval anuran functional traits and corticosterone levels” by John A. Marino Jr and co-workers. Read their summary here:

In addition to directly causing death, predators can have a range of effects on prey that detect their presence, including altered growth, behavior, and stress hormone levels. These effects may strongly affect how potential prey animals interact with other species. For instance, predator presence may affect interactions between prey species and parasites, which could change the effects of parasite infection on hosts. In our study, we examined how larval dragonfly predators affect the interaction between tadpoles (wood frogs and green frogs) and their parasites in a series of aquaria experiments.

dragonfly_larva_eating_tadpole

We excluded direct predation by only exposing tadpoles to predator chemical cue (i.e., water from containers holding predators), which has effects on tadpoles similar to actual predator presence. The parasites were a common group of trematodes (flatworms) known as echinostomes, which infect the kidneys of tadpoles. We examined how predator cue affected the response of tadpoles from their first detection of parasite presence to after infection. We found that parasite infection reduced tadpole activity, growth, and survival, and predator cue reduced activity and growth. We also found that the effects of parasites on tadpole behavior, stress hormones, body shape, and development depended on the presence of predators. These effects would be hard to predict by only considering predator and parasite effects separately, which is the case in most studies. Our findings thus emphasize the importance of considering the effects of parasites and predators jointly. The effects we observed are likely important in natural populations and may have important consequences for amphibian conservation. Echinostomes are more abundant near human activities (e.g., agriculture, urbanization), so that their joint effects with other stressors of amphibians, such as predators, are important to understand.

Photo: Ariel Heldt

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Categories

%d bloggers like this: