Posted by: oikosasa | October 4, 2013

Does the moon cause “10-year” cycles in animal populations?

What effect does the moon actually have on us? And on animal populations? Find out more in the new Early View paper “Linking ‘10-year’ herbivore cycles to the lunisolar oscillation: the cosmic ray hypothesis” by Vidar Selås. Below, is Vidar’s summary of the study:


The famous “10-year” population cycles of the snowshoe hare and its specialist predator, the Canada lynx, are commonly interpreted as a combined effect of predation and overgrazing. However, these mechanisms cannot explain the consistent cycle period. Herbert Archibald showed that the mean cycle period is 9.3 years, corresponding to the half period of a full 360° rotation of the Moon’s orbital plane. The same period is apparent in a 120-yr time series for the autumnal moth in Fennoscandia and an 1145-yr time series for the larch budmoth in the Alps.


According to Thomas C. R. White, stress factors that require increased mobilization of proteins in plants may increase protein availability above the critical threshold for herbivores. As pointed out by Charles H. Smith, hare cycles are most pronounced in areas with low protection against cosmic rays. Because repair of damages caused by cosmic rays require protein mobilization in plants, and cosmic ray fluxes are affected by the position of the Moon, cosmic rays may be the link between the lunar and herbivore cycles.

Cosmic rays are high-speed charged particles (mainly protons), which are deflected by a sufficiently strong magnetic field and absorbed by a sufficiently thick air layer. The protection provided by the Sun’s magnetic field, which reaches far beyond the Earth’s orbit, fluctuates with the 11-yr solar cycle. The protection provided by the Earth’s magnetic field decreases from equator to the magnetic poles, whereas the protection provided by the Earth’s atmosphere decreases with elevation.

In the atmosphere, secondary cosmic rays are created by collisions between primary cosmic rays and air molecules. Because the most important secondary cosmic rays, muons, are short-lived, only protons with sufficiently high speed are able to produce muons that reach the ground. When eclipses occur close to solstice, which happens at 9.3-yr intervals, the Moon enhances the Sun-Earth magnetic connection, so that more solar energetic particles hit the Earth’s magnetic field. This results in increased temperatures and an expansion of the atmosphere, making it more difficult for muons to reach the ground. The effect of the Moon is probably most important in areas where the protection against cosmic rays is low. In areas with better protection, the 11-yr solar signal would be expected to prevail.



  1. […]… […]

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s


%d bloggers like this: